4 resultados para Murine norovirus

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemokines help to establish cerebral inflammation after ischemia, which comprises a major component of secondary brain injury. The CXCR4 chemokine receptor system induces neural stem cell migration, and hence has been implicated in brain repair. We show that CXCR1 and interleukin-8 also stimulate chemotaxis in murine neural stem cells from the MHP36 cell line. The presence of CXCR1 was confirmed by reverse transcriptase PCR and immunohistochemistry. Interleukin-8 evoked intracellular calcium currents, upregulated doublecortin (a protein expressed by migrating neuroblasts), and elicited positive chemotaxis in vitro. Therefore, effectors of the early innate immune response may also influence brain repair mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determination of lacunar-canalicular permeability is essential to understand the mechano-transduction mechanism of bone. Murine models are widely used to investigate skeletal growth and regulation, but the value of lacunar-canalicular permeability is still unclear. To address this question, a poroelastic analysis based on nanoindentation data was used to calculate the lacunar-canalicular permeability of wild type C57BL/6 mice of 12 months. Cross-sections of three tibiae were indented using spherical fluid cell indenter tips of two sizes. Results suggest that the value of lacunar-canalicular intrinsic permeability of B6 female murine tibia is in the order of 10 -24 m2. The distribution of the values of intrinsic permeability suggests that with larger contact sizes, nanoindentation alone is capable of capturing the multi-scale permeability of bone. Multi-scale permeability of bone measured by nanoindentation will lead to a better understanding of the role of fluid flow in mechano-transduction. © 2013 American Society of Civil Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The determination of lacunar-canalicular permeability is essential for understanding local fluid flow in bone, which may indicate how bone senses changes in the mechanical environment to regulate mechano-adaptation. The estimates of lacunar-canalicular permeability found in the literature vary by up to eight orders of magnitude, and age-related permeability changes have not been measured in non-osteonal mouse bone. The objective of this study is to use a poroelastic approach based on nanoindentation data to characterize lacunar-canalicular permeability in murine bone as a function of age. Nine wild type C57BL/6 mice of different ages (2, 7 and 12 months) were used. Three tibiae from each age group were embedded in epoxy resin, cut in half and indented in the longitudinal direction in the mid-cortex using two spherical fluid indenter tips (R=238 μm and 500 μm). Results suggest that the lacunar-canalicular intrinsic permeability of mouse bone decreases from 2 to 7 months, with no significant changes from 7 to 12 months. The large indenter tip imposed larger contact sizes and sampled larger ranges of permeabilities, particularly for the old bone. This age-related difference in the distribution was not seen for indents with the smaller radius tip. We conclude that the small tip effectively measured lacunar-canalicular permeability, while larger tip indents were influenced by vascular permeability. Exploring the age-related changes in permeability of bone measured by nanoindentation will lead to a better understanding of the role of fluid flow in mechano-transduction. This understanding may help indicate alterations in bone adaptation and remodeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The determination of lacunar-canalicular permeability is essential for understanding local fluid flow in bone, which may indicate how bone senses changes in the mechanical environment to regulate mechano-adaptation. The estimates of lacunar-canalicular permeability found in the literature vary by up to eight orders of magnitude, and age-related permeability changes have not been measured in non-osteonal mouse bone. The objective of this study is to use a poroelastic approach based on nanoindentation data to characterize lacunar-canalicular permeability in murine bone as a function of age. Nine wild type C57BL/6 mice of different ages (2, 7 and 12 months) were used. Three tibiae from each age group were embedded in epoxy resin, cut in half and indented in the longitudinal direction in the mid-cortex using two spherical fluid indenter tips (R=238 μm and 500 μm). Results suggest that the lacunar-canalicular intrinsic permeability of mouse bone decreases from 2 to 7 months, with no significant changes from 7 to 12 months. The large indenter tip imposed larger contact sizes and sampled larger ranges of permeabilities, particularly for the old bone. This age-related difference in the distribution was not seen for indents with the smaller radius tip. We conclude that the small tip effectively measured lacunar-canalicular permeability, while larger tip indents were influenced by vascular permeability. Exploring the age-related changes in permeability of bone measured by nanoindentation will lead to a better understanding of the role of fluid flow in mechano-transduction. This understanding may help indicate alterations in bone adaptation and remodeling. © 2013 Elsevier Ltd.